A ug 2 00 5 RAINBOW HAMILTON CYCLES IN RANDOM REGULAR GRAPHS SVANTE JANSON

نویسنده

  • NICHOLAS WORMALD
چکیده

A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n → ∞, provided d ≥ 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Hamilton cycles in random regular graphs

A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n→∞, for fixed d ≥ 8.

متن کامل

A ug 2 00 5 RAINBOW HAMILTON CYCLES IN RANDOM REGULAR GRAPHS

A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n → ∞, provided d ≥ 8.

متن کامل

Hamilton Cycles in a Random Tournament

The number of Hamilton cycles in a random tournament is asymptotically normally distributed.

متن کامل

. C O ] 8 D ec 2 00 8 ON VERTEX , EDGE , AND VERTEX - EDGE RANDOM GRAPHS

We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erd˝ os-Rényi random graphs [5, 6], vertex random graphs are generalizations of geometric random graphs [16], and vertex-edge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008